# Department Seminars & Colloquia

You can get notification if you subscribe the calendar in Google Calendar or iPhone calendar etc.

This series of lectures will focus on recent developments of the so-called a-contraction theory and its application to the study of discontinuous flow at high Reynolds numbers. We will first introduce the classical framework to study the stability of 1D shocks for compressible flows. Recent multi-D applications will be presented next, both in the context of compressible and incompressible flows.

Liouville quantum gravity (LQG) surfaces are random topological surfaces which are important in statistical mechanics and have deep connections to other mathematical objects such as Schramm–Loewner evolution and random planar maps. These random surfaces are too singular and fractal in the sense that the Hausdorff dimension, viewed as a metric space equipped with its intrinsic metric, is strictly bigger than two. I will talk about the interesting geometric structure and recent progress on LQG surfaces.

하나금융 융합기술원은 국내 금융그룹 최초의 AI 연구소로 2018년부터 지난 4년 간 다양한 금융서비스에 현행 AI 응용기술들을 접목시키고 금융사 내 기술 전파에 큰 성과를 올려왔다. 그 중에서도 융합기술원이 연구/개발하는 신용평가 기술은 업계를 선도하고 있으며 그런 선도 기술을 만들어나가는 과정을 소개하려 한다. 또한, 응용기술 뿐만 아니라 향후 다양한 분야의 원천기술 연구를 위해 국내 유수 산업/학계 인재들이 모이는 조직으로 변형해가는 노력을 소개할 예정이다.

온라인, 오프라인 동시진행

온라인, 오프라인 동시진행

In this presentation, I will present me, Daeyeol Jeon, and Chang Heon Kim's construction of certain points on $X_1(N)$ over ring class fields (and therefore construction of points on the abelian varieties associated to newforms of level $\Gamma_1(N)$). Our work generalizes Bryan Birch's Heegner points on $X_0(N)$. Then, we show that these points form Euler systems (like the Heegner points), and we improve Kolyvagin's Euler system techniques to show that for our point $P_{\tau_K/c}$ and any ring class character $\chi$ of the extended ring class field of conductor $c$ satisfying $\chi=\overline{\chi}$, if $P_{\tau_K/c}^\chi$ is non-torsion and $G_K \to \operatorname{Aut} A_f[\pi]$ is surjective, then the corank of $\Sel(A_\chi/K)$ is 1, which implies the rank of $A_f(K)^\chi$ is 1. (Please contact Bo-Hae Im if you want to join the seminar.)